

Welcome to CleanerVersion’s documentation!

Contents:

	Historization with CleanerVersion
	Quick Start

	Slowly Changing Dimensions - Type 2

	Historization of a single entity

	Many-to-One relationships

	Many-to-Many relationships

	Navigating between different versions of an object

	Deleting objects

	Restoring previous versions

	Deferred fields

	Unique Indexes

	Specifying the id of an object at creation time

	Postgresql specific

	Integrating CleanerVersion versioned models with non-versioned models

	VersionedAdmin admin for Django Admin

	Upgrade notes

	Known Issues

Indices and tables

	Index

	Module Index

	Search Page

Historization with CleanerVersion

Disclaimer: This documentation as well as the CleanerVersion application code have been written to work against Django
1.9.x through 1.11.x. The documentation may not be accurate anymore when using more recent versions of Django.

Quick Start

Installation

If you don’t like to work with the sources directly, you can also install the CleanerVersion package from PyPI [https://pypi.org/project/CleanerVersion/] by doing so (you may need superuser privileges, as for every other
pip-installation):

pip install cleanerversion

Afterwards, add versions to your INSTALLED_APPS

	INSTALLED_APPS = (

	…
‘versions’,
…

)

If you want to check whether your components are compatible with CleanerVersion, you can run the unit tests coming
with CleanerVersion. To do so, register the CleanerVersion test app to the INSTALLED_APPS variable
of your Django project by adding the versions_tests keyword as follows:

INSTALLED_APPS = (
 ...
 'versions_tests',
 ...
)

Now, whether things work out correctly, run CleanerVersion’s unit tests from within your Django
project root:

python manage.py test versions_tests

If this terminates with a OK, you’re all set. Go on and create your models as follows.
Keep in mind that you are not required to keep versions_tests in your INSTALLED_APPS settings, it will only
create unnecessary tables everytime you sync with your DB. So, you can safely remove it after having run the test suite.

A simple versionable model

First, import all the necessary modules. In this example, all the imports are done in the beginning, such that this
would be a working example, if place in the same source file. Here’s how:

from datetime import datetime
from django.db.models.fields import CharField
from django.utils.timezone import utc
from versions.models import Versionable

class Person(Versionable):
 name = CharField(max_length=200)
 address = CharField(max_length=200)
 phone = CharField(max_length=200)

Assuming you know how to deal with Django Models [https://docs.djangoproject.com/en/stable/topics/db/models/] (you
will need to migrate your DB before your code gets usable; Or you’re only testing, then that step is done by Django),
the next step is using your model to create some entries:

p = Person.objects.create(name='Donald Fauntleroy Duck', address='Duckburg', phone='123456')
t1 = datetime.utcnow().replace(tzinfo=utc)

p = p.clone() # Important! Fetch the returned object, it's the current one! Continue work with this one.
p.address = 'Entenhausen'
p.save()
t2 = datetime.utcnow().replace(tzinfo=utc)

p = p.clone()
p.phone = '987654'
p.save()
t3 = datetime.utcnow().replace(tzinfo=utc)

Now, let’s query the entries:

donald_current = Person.objects.as_of().get(name__startswith='Donald') # Get the current entry
print str(donald_current.address) # Prints 'Entenhausen'
print str(donald_current.phone) # Prints '987654'

donald_t1 = Person.objects.as_of(t1).get(name__startswith='Donald') # Get a historic entry
print str(donald_t1.address) # Prints 'Duckburg'
print str(donald_t1.phone) # Prints '123456'

A related versionable model

Here comes the less simple approach. What we are going to set up is both, a Many-to-One- and a
Many-to-Many-relationship. Keep in mind, that this is just an example and we try to focus on the
relationship part, rather than the semantical correctness of the entries’ fields:

from datetime import datetime
from django.db.models.fields import CharField
from django.utils.timezone import utc
from versions.models import Versionable
from versions.fields import VersionedManyToManyField, VersionedForeignKey

class Discipline(Versionable):
 """A sports discipline"""
 name = CharField(max_length=200)
 rules = CharField(max_length=200)

class SportsClub(Versionable):
 """Sort of an association for practicing sports"""
 name = CharField(max_length=200)
 practice_periodicity = CharField(max_length=200)
 discipline = VersionedForeignKey('Discipline')

class Person(Versionable):
 name = CharField(max_length=200)
 phone = CharField(max_length=200)
 sportsclubs = VersionedManyToManyField('SportsClub', related_name='members')

Here comes the data loading for demo:

running = Discipline.objects.create(name='Running', rules='There are none (almost)')
icehockey = Discipline.objects.create(name='Ice Hockey', rules='There\'s a ton of them')

stb = SportsClub.objects.create(name='STB', practice_periodicity='tuesday and thursday night', discipline=running)
hcfg = SportsClub.objects.create(name='HCFG', practice_periodicity='monday, wednesday and friday night', discipline=icehockey)

peter = Person.objects.create(name='Peter', phone='123456')
mary = Person.objects.create(name='Mary', phone='987654')

Bringing things together
Peter wants to run
peter.sportsclubs.add(stb)

t1 = datetime.utcnow().replace(tzinfo=utc)

Peter later joins HCFG for ice hockey
hcfg.members.add(peter)

Mary joins STB for running
stb.members.add(mary)

t2 = datetime.utcnow().replace(tzinfo=utc)

HCFG changes the paractice times
hcfg = hcfg.clone()
hcfg.practice_periodicity = 'monday, wednesday and thursday'
hcfg.save()

Too bad, new practice times don't work out for Peter anymore, he leaves HCFG
hcfg.members.remove(peter)
t3 = datetime.utcnow().replace(tzinfo=utc)

Let’s continue with the queries, to check, whether all that story can be reconstructed:

Querying for timestamp t1
sportsclub = SportsClub.objects.as_of(t1).get(name='HCFG')
print "Number of " + sportsclub.name + " (" + sportsclub.discipline.name + ") members: " + str(sportsclub.members.count())
for member in list(sportsclub.members.all()):
 print "- " + str(member.name) # prints ""

sportsclub = SportsClub.objects.as_of(t1).get(name='STB')
print "Number of " + sportsclub.name + " (" + sportsclub.discipline.name + ") members: " + str(sportsclub.members.count())
for member in list(sportsclub.members.all()):
 print "- " + str(member.name) # prints "- Peter"

Querying for timestamp t2
sportsclub = SportsClub.objects.as_of(t2).get(name='HCFG')
print "Number of " + sportsclub.name + " (" + sportsclub.discipline.name + ") members: " + str(sportsclub.members.count())
for member in list(sportsclub.members.all()):
 print "- " + str(member.name) # prints "- Peter"

Querying for timestamp t3
sportsclub = SportsClub.objects.as_of(t3).get(name='HCFG')
print "Number of " + sportsclub.name + " (" + sportsclub.discipline.name + ") members: " + str(sportsclub.members.count())
for member in list(sportsclub.members.all()):
 print "- " + str(member.name) # prints ""

sportsclub = SportsClub.objects.as_of(t3).get(name='STB')
print "Number of " + sportsclub.name + " (" + sportsclub.discipline.name + ") members: " + str(sportsclub.members.count())
for member in list(sportsclub.members.all()):
 print "- " + str(member.name) # prints "- Peter\n- Mary"

Pretty easy, isn’t it? ;)

Slowly Changing Dimensions - Type 2

Find the basics of slowly changing dimensions - type 2 [http://en.wikipedia.org/wiki/Slowly_changing_dimension#Type_2] and other types at Wikipedia.
These concepts were taken over and extended to cover different types of relationships.

The technical details and assumptions are documented in the following sections.

Historization of a single entity

The definition of Versionable fields is as follows:

	id

	The virtual ID of an entry. This field figures also as the primary key (pk) and is randomly created

	identity

	Identifies an object over all its versions, i.e. identity does not change from one version to another

	version_birth_date

	The timestamp at which an object was created. All versions of an object will have the same creation date.

	version_start_date

	The timestamp at which a version was created.

	version_end_date

	The timestamp at which a version was cloned. If a version has not been cloned yet, version_end_date will be
set to None (or NULL) and the entry is considered the most recent entry of an object (i.e. it is the object’s
current version)

Let’s assume the following class definition for this hands-on:

class Item(Versionable):
 name = CharField(max_length="200") # referred to as the payload data
 version = CharField(max_length="200") # part of the payload data as well; added for more transparency

Having the class, let’s create an instance of it:

item = Item.objects.create(name="Peter Muster", version="1")

This sequence of commands generated the following DB entry in the table associated to Item (inheriting from
Versionable):

	id (pk)

	identity

	version_birth_date

	version_start_date

	version_end_date

	name

	version

	123

	123

	2014-08-14 14:43:00

	2014-08-14 14:43:00

	None

	Peter Muster

	1

Once you wish to change some value on your object, do it as follows:

item = item.clone()
item.name = "Peter Mauser"
item.version = "2"
item.save()

In the first line, we create the new version of the item entry and assign it immediately to the same variable we used
to work with.

On the new version, we can now change the payload data at will and save() the object, once we’re done.

On a DB level, things will look as follows:

	id (pk)

	identity

	version_birth_date

	version_start_date

	version_end_date

	name

	version

	123

	123

	2014-08-14 14:43:00

	2014-08-14 15:09:00

	None

	Peter Mauser

	2

	124

	123

	2014-08-14 14:43:00

	2014-08-14 14:43:00

	2014-08-14 15:09:00

	Peter Muster

	1

Notice the primary key of the current entry did not change. The original id will always point the current version of
an object.

Revisions of an object (i.e. historic versions) are copies of the current entry at the time pointed by the version’s
version_end_date.

For making things clearer, we create another version:

item = item.clone()
item.name = "Petra Mauser"
item.version = "3"
item.save()

Once again, the situation on DB level will present itself as follows:

	id (pk)

	identity

	version_birth_date

	version_start_date

	version_end_date

	name

	version

	123

	123

	2014-08-14 14:43:00

	2014-08-14 15:21:00

	None

	Petra Mauser

	3

	124

	123

	2014-08-14 14:43:00

	2014-08-14 14:43:00

	2014-08-14 15:09:00

	Peter Muster

	1

	125

	123

	2014-08-14 14:43:00

	2014-08-14 15:09:00

	2014-08-14 15:21:00

	Peter Mauser

	2

On a timeline, the state can be represented as follows:

[image: The visual representation of the single entry CleanerVersion example]

Many-to-One relationships

Declaring versioned M2O relationship

Here’s an example with a sportsclub that can practice at most one sporty discipline:

class SportsClub(Versionable):
 """Sort of an association for practicing sports"""
 name = CharField(max_length=200)
 practice_periodicity = CharField(max_length=200)
 discipline = VersionedForeignKey('Discipline')

class Discipline(Versionable):
 """A sports discipline"""
 name = CharField(max_length=200)
 rules = CharField(max_length=200)

If a many-to-one (M2O) relationship can also be unset, don’t forget to set the nullable flag (null=true) as an argument
of the VersionedForeignKey field.

Adding objects to a versioned M2O relationship

Let’s create two disciplines and some sportsclubs practicing these disciplines:

running = Discipline.objects.create(name='Running', rules='There are none (almost)')
icehockey = Discipline.objects.create(name='Ice Hockey', rules='There\'s a ton of them')

stb = SportsClub.objects.create(name='STB', practice_periodicity='tuesday and thursday night',
 discipline=running)
hcfg = SportsClub.objects.create(name='HCFG',
 practice_periodicity='monday, wednesday and friday night',
 discipline=icehockey)
lca = SportsClub.objects.create(name='LCA', practice_periodicity='individual',
 discipline=running)

t1 = datetime.utcnow().replace(tzinfo=utc)

Reading objects from a M2O relationship

Now, let’s read some stuff previously loaded:

sportsclubs = SportsClub.objects.as_of(t1) # This returns all SportsClubs existing at time t1 [returned within a QuerySet]

You can also use select_related() to reduce the number of database queries made, if you know that you’ll need the
ForeignKey-related objects:

Only one database query is made for this set of statements:
hcfg = SportsClub.objects.current.select_related('discipline').get(name='HCFG')
print hcfg.discipline.name

Note that select_related only works for models containing foreign keys. It does not work for reverse relationships:

This does not save any database queries! select_related() has no effect here:
icehockey = Discipline.objects.current.select_related('sportsclub_set').get(name='Ice Hockey')
print icehockey.sportsclub_set.first().name

This is not a CleanerVersion limitation; it’s just the way that Django’s select_related() works. Use
prefetch_related() instead if you want to prefetch reverse or many-to-many relationships. Note that
prefetch_related() will use at least two queries to prefetch the related objects. See also
the Notes about using prefetch_related.

Filtering using objects

Following on the above example, let’s create a new version of the running Discipline. First, though, let’s take
a look at the id, identities and foreign keys as they are now:

>> (running.id, running.identity)
(1, 1)
>> (stb.discipline_id, stb.id, stb.identity)
(1, 10, 10)
>> (lca.discipline_id, lca.id, lca.identity)
(1, 20, 20)

OK, so now we create a new version:

running = running.clone()
running.rules = "Don't run on other's feet"
running.save()

Fetch the old version from the database:
running_at_t1 = Discipline.objects.as_of(t1).get(name='Running')

How do the id, identities, and foreign keys look at this point?

>> (running.id, running.identity)
(1, 1)

>> (running_at_t1.id, running_at_t1.identity)
(2, 1)

>> (stb.discipline_id, stb.id, stb.identity)
(1, 10, 10)

>> (lca.discipline_id, lca.id, lca.identity)
(1, 20, 20)

The objects running and running_at_t1 have different ids, but the same identity; they are different
versions of the same object. The id of the old version has changed; the new version has the original id value.

Notice that stb and lca still refer to Discipline with id 1. When they were created, at t1, they were
actually pointing to a different version than the current version. Their discipline_id column was not updated to
point to the old version when running was cloned. This is an important implementation detail - foreign
keys point to the latest version of the foreign object, which always has it’s id equal to it’s identity. If this
was not the case, it would be necessary to clone all of the objects that have a foreign key pointing to object X when
object X is cloned; this would result in a very quickly growing database.

When searching for an object at a given time t1, foreign key values are matched against the related records identity
column, and the related record are further restricted to those records that are valid at t1.

All of this should help you understand that when you filter a query for a certain point in time using an object,
it’s actually the identity of the object that will be used for the filtering, and not the id. You are effectively
saying, “I want to limit to records that were associated with some version of this object”.

>> stb1 = SportsClub.objects.as_of(t1).filter(discipline=running, name='STB').first()
>> stb2 = SportsClub.objects.as_of(t1).filter(discipline=running_at_t1, name='STB').first()
>> (stb1.discipline.id, stb2.discipline.id)
(2, 2)

>> stb3 = SportsClub.objects.current.filter(discipline=running, name='STB').first()
>> stb4 = SportsClub.objects.current.filter(discipline=running_at_t1, name='STB').first()
>> (stb3.discipline.id, stb4.discipline.id)
(1, 1)

If you really want to filter using the id of the object, you need to explicitly use the id instead of
passing the object itself:

>> stb5 = SportsClub.objects.as_of(t1).filter(discipline_id=running.id, name='STB').first()
>> stb6 = SportsClub.objects.as_of(t1).filter(discipline_id=running_at_t1.id, name='STB').first()
>> (stb5.discipline.id, stb6 is None)
(2, True)

>> stb7 = SportsClub.objects.current.filter(discipline_id=running.id, name='STB').first()
>> stb8 = SportsClub.objects.current.filter(discipline_id=running_at_t1.id, name='STB').first()
>> (stb7.discipline.id, stb8 is None)
(1, True)

Many-to-Many relationships

Declaring versioned M2M relationships

Assume a Person can be part of multiple SportsClubs:

class Person(Versionable):
 name = CharField(max_length=200)
 phone = CharField(max_length=200)
 sportsclubs = VersionedManyToManyField('SportsClub', related_name='members')

class SportsClub(Versionable):
 """Sort of an association for practicing sports"""
 name = CharField(max_length=200)
 practice_periodicity = CharField(max_length=200)

Adding objects to a versioned M2M relationship

Adding objects to a many-to-many relationship works just like in standard Django:

person1 = Person.objects.create(name="Hanover Fiste", phone="555-1234")
person2 = Person.objects.create(name="Gloria", phone="555-6777")
club = SportsClub.objects.create(name="Sweatshop", practice_periodicity="daily")

This is one way to do it:
club.members.add(person1, person2)

Another way to do it to assign a list. This will remove any existing
members that are not in the list, and add any members that are in the
list, but not yet associated in the database.
club.members = [person1, person2]

Changing many-to-many relationships is only allowed when using the current version of the object:

This would raise an Exception:
old_club = SportsClub.objects.previous_version(club)
old_club.members.add(person3)

Reading objects from a versioned M2M relationship

This works just like in standard Django, with the exception that you specify either that you are using
the current state, or the state at a specific point in time:

Working with the current state:
club = Club.objects.current.get(name='Sweatshop')
local_members = club.members.filter(phone__startswith='555').all()

Working with a specific point in time:
november1 = datetime(2014, 11, 1).replace(tzinfo=utc)
club = Club.objects.as_of(november1).get(name='Sweatshop')
The related objects that are retrieved were existing and related as of november1, too.
local_members = club.members.filter(phone__startswith='555').all()

Queries can of course traverse relationships, too:
clubs_with_g_members = Club.objects.current.filter(members__name__startswith='G').all()

Versioning objects being part of a versioned M2M relationship

Versioning an object in a ManyToMany relationship requires 3 steps to be done, including the initial setup:

	Setting up the situation requires to add at least two objects to a M2M relationship:

blog1.items.add(item1)

[image: ../_images/clone_m2m_item_1.png]

	Further on, let’s clone the Item-instance:

new_item1 = item1.clone()

[image: ../_images/clone_m2m_item_2.png]

	CleanerVersion takes care of cloning and re-linking also the relationships:

done automatically by cleanerversion when item1.clone() was called

[image: ../_images/clone_m2m_item_3.png]

The records in ManyToMany intermediary tables are versioned: they have version_birth_date,
version_start_date and version_end_date columns. The ForeignKey columns in ManyToMany
Intermediary tables store the id of the referenced records. Note that this is different than
the VersionedForeignKeys in Versionable model instances, which store the identity of the
referenced objects.
This is transparent in normal usage, but can be important to keep in mind when you need to write a query
that directly references the ForeignKey columns.

Removing objects from a versioned M2M relationship

Changing many-to-many relationships is only allowed when using the current version of the object.

Deleting an object from a many-to-many relationship results in the record in the relationship table being
soft-deleted. In other words, a version_end_date is set on the relationship record.

The syntax for soft-deleting is the same as the standard Django Model deletion syntax:

Various ways to remove one or more associations:
club.members.remove(person1)
club.members.remove(person2, person3)
club.members.remove(person4.id)
club.members = []

Notes about using prefetch_related

prefetch_related [https://docs.djangoproject.com/en/stable/ref/models/querysets/#prefetch-related] accepts
simple sting lookups or Prefetch [https://docs.djangoproject.com/en/stable/ref/models/querysets/#django.db.models.Prefetch]
objects.

When using prefetch_related with CleanerVersion, the generated query that fetches the related objects will
be time-restricted based on the base queryset. If you provide a Prefetch object that specifies a queryset, the
queryset must either not be time-limited (using .as_of() or .current), or be time-limited with the same
.as_of or .current as the base queryset. If the Prefetch queryset is not time-limited, but the base
queryset is, the Prefetch queryset will adopt the same time limitation as the base queryset.

For example, assuming you want everything at the time end_of_last_month, you can do this:

Prefetch queryset is not explicitly time-restricted, and will adopt the base queryset's time-restriction.
disciplines_prefetch = Prefetch(
 'sportsclubs__discipline_set',
 queryset=Discipline.objects.filter('name__startswith'='B'))
people_last_month = Person.objects.as_of(end_of_last_month).prefetch_related(disciplines_prefetch)

or this:

Prefetch queryset is explicitly time-restricted with the same time restriction as the base queryset.
disciplines_prefetch = Prefetch(
 'sportsclubs__discipline_set',
 queryset=Discipline.objects.as_of(end_of_last_month).filter('name__startswith'='B'))
people_last_month = Person.objects.as_of(end_of_last_month).prefetch_related(disciplines_prefetch)

However, the following Prefetch, without a time restriction that differs from the base queryset, will
raise a ValueError when evaluated:

Don't do this, the Prefetch queryset's time restriction doesn't match it's parent's:
disciplines_prefetch = Prefetch(
 'sportsclubs__discipline_set',
 queryset=Discipline.objects.current.filter('name__startswith'='B'))
people_last_month = Person.objects.as_of(end_of_last_month).prefetch_related(disciplines_prefetch)

If a Prefetch without an explicit queryset is used, or a simple string lookup, the generated queryset will
be appropriately time-restricted. The following statements will propagate the base query’s
as_of value to the generated related-objects queryset:

people1 = Person.objects.as_of(end_of_last_month).prefetch_related(Prefetch('sportsclubs__discipline_set'))
people2 = Person.objects.as_of(end_of_last_month).prefetch_related('sportsclubs__discipline_set')

Navigating between different versions of an object

Accessing the version at a given point in time

If you have an object item1, and know that it existed at some other time t1, you can get the other version like this:

Will throw exception if no object exists:
version = Item.objects.as_of(t1).get(identity=item1.identity)

Or like this, which will return None if no object exists:
version = Item.objects.as_of(t1).filter(identity=item1.identity).first()

Accessing the current version of an object

current_version(obj) will return the latest version of the obj, or None if no version is currently active.

Note that if the current object thinks that it is the current object (e.g. version_end_date is None),
this does not check the database. This means that if you fetched a copy of obj, and some other code has
created a new version of obj before you call current_version(), you will get your existing obj returned,
not the newest version from the database.

current_version = Items.objects.current_version(item1)

Accessing the previous and next versions of an object

You can navigate between the versions of an object that you have.

previous_version(obj) will provide the previous version of obj. If there is no previous version, the returned
object will be the same object.

previous = Items.objects.previous_version(item1)

next_version(obj) will provide the next version of obj. If there is no next version, the returned
object will be the same object.

Note that if the current object’s version_end_date is None, this does not check the database. This means that
if you fetched a copy of obj, and some other code has created a new version of obj before you call next_version(),
you will get your existing obj returned, not the newest version from the database.

next = Items.objects.next_version(item1)

current_version, previous_version and next_vesion accept an optional parameter relations_as_of.
This allows you to control the point in time which is used for accessing related objects (e.g. related by foreign key,
reverse foreign key, one-to-one or many-to-many fields). Valid values for relations_as_of are:

	'end': use version_end_date minus one microsecond. If the version is current, current related objects are
returned when accessing relation fields. This is the default.

	'start': use version_start_date

	datetime object: use this datetime. If the supplied datetime lies outside of the validity range of the version,
a ValueError will be raised.

	None: no restriction is done. All objects ever associated with this object will be returned when accessing
relation fields.

Deleting objects

You can expect delete() to behave like you are accustomed to in Django, with these differences:

Not actually deleted from the database

When you call delete() on a versioned object, it is not actually removed from the database. Instead, it’s
version_end_date is changed from None to a timestamp.

The same is true for the VersionedManyToManyField entries associated with the object you call delete() on:
they are terminated by setting a version_end_date.

on_delete handlers

on_delete handlers [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ForeignKey.on_delete]
behave like this:

The deletion is cascaded. In the CleanerVersion context, this means that the cascaded-to versions are terminated.

The cascaded-to objects are cloned before SET, SET_NULL, or SET_DEFAULT are applied.

Does nothing, just like in standard Django. This has the effect of leaving a current object with a reference to
a deleted object. However, if you ask the current object for it’s relations, it will not return the deleted object,
because the deleted object does not match the current object’s query time restriction (e.g. only current objects).

Behaves just like in standard Django.

Restoring previous versions

Previous versions can be restored like this:

restored_version = old_version.restore()

restored_version will now be the current version. This creates a new version, the old version is left untouched.
If any current version existed when this code ran, it was terminated before the restored version was created.

Be aware that relations (VersionedForeignKey, ManyToManyField, reverse foreign keys, etc.) are not restored. You will
need to restore relations yourself if necessary.

If the object being restored has a non-nullable VersionedForeignKey, you will need to supply a value (object instance
or pk) for this field. If you do not supply a value, a versions.ForeignKeyRequiresValueError will be raised.

Values can also be provided for other, non-ForeignKey fields at restore time.

Example:

Models:

class Team(Versionable):
 name = models.CharField(max_length=50)

class Mascot(Versionable):
 name = models.CharField(max_length=50)
 age = models.IntegerField()
 team = VersionedForeignKey(Team, null=False)

Code:

beaver = beaver_v1.restore(team=mascot_v1.team)

You can also use an id instead of an object when providing ForeignKeys, just be
sure to use the field.attname (usually: field name + '_id') as the parameter name:
new_team_pk = Team.objects.current.get(name='Black Stripes').pk
tiger = tiger_v4.restore(team_id=new_team_pk, age=33)

Deferred fields

It is not possible to clone or restore a version that has been fetched from the database without all
of it’s fields, for example using one of these three equivalent statements:

club = Club.objects.current.defer(
 'phone', 'identity, 'version_start_date', 'version_end_date', 'version_birth_date'
).first()
club = Club.objects.current.only('name').first()
club = Club.objects.raw("""
 SELECT id, name FROM {} WHERE version_end_date IS NULL
""".format(Club._meta.db_table)[0]

Trying to do so will raise a ValueError. Any versioned object that needs to be cloned or restored
must be fetched from the database without using defer() or only() (or raw() with only
some of the model’s fields).

Unique Indexes

To have unique indexes with versioned models takes a bit of care. The issue here is that multiple versions having the same
data can exist; potentially the only difference will be with the id, version_start_date, and version_end_date
columns.

For example, what if we want the name and phone_number to be unique together for current versions:

	id (pk)

	identity

	version_birth_date

	version_start_date

	version_end_date

	name

	phone_number

	123

	123

	2014-08-14 14:43:00

	2014-08-14 15:21:00

	None

	Petra Mauser

	555-1234

	124

	123

	2014-08-14 14:43:00

	2014-08-14 14:43:00

	2014-08-14 15:09:00

	Peter Muster

	555-1234

In Postgresql, it’s possible to create a
partially unique index [http://www.postgresql.org/docs/9.3/static/indexes-partial.html#INDEXES-PARTIAL-EX3] which
enforces that name and phone_number are unique together when the version_end_date is null. Other databases may have
a similar capability. A helper method for creating these partially unique indexes is provided for Postgresql, see
the Postgresql specific section for more detail.

Specifying the id of an object at creation time

It is possible to specify an id when creating a new object, instead of letting CleanerVersion do this for you. The
id must be a unicode string representing a
version 4 UUID [http://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_.28random.29].

Be careful if you do this!. The possibility of collisions can increase greatly if not all sources that specify
a UUID use sufficient entropy. See
this [http://en.wikipedia.org/wiki/Universally_unique_identifier#Random_UUID_probability_of_duplicates] for more
details.

The database-level unique constraint on the id will prohibit a duplicate uuid from being inserted, but your application
will need to be ready to handle that.

Postgresql specific

Django creates extra indexes [https://docs.djangoproject.com/en/stable/ref/databases/#indexes-for-varchar-and-text-columns]
for CharFields that are used for like queries (e.g. WHERE foo like ‘fish%’). Since Django 1.6 (the version
CleanerVersion originally targeted) did not have native database UUID fields, the UUID fields that are used for the id
and identity columns of Versionable models have these extra indexes created. In fact, these fields will never be
compared using the like operator. Leaving these indexes would create a performance penalty for inserts and updates,
especially for larger tables. versions.util.postgresql has a function remove_uuid_id_like_indexes that can be
used to remove these extra indexes.

For the issue of Unique Indexes, versions.util.postgresql has a function
create_current_version_unique_indexes that can be used to create unique indexes. For this to work, it’s necessary
to define a VERSION_UNIQUE attribute when defining the model:

class Person(Versionable):
 name = models.CharField(max_length=40)
 phone_number = models.CharField(max_length=20)

 VERSION_UNIQUE = [['name', 'phone_number']]

If there are multiple sets of columns that should be unique, use something like this:

VERSION_UNIQUE = [['field1', 'field2'], ['field3', 'field4']]

As an extra method of protection against bad data appearing, it is good to ensure that only one version of an object
is current at the same time. This can be done by adding a partially unique index for the identity column.
You can use versions.util.postgresql.create_current_version_unique_identity_indexes() for this.

For an example of how to transparently create the database indexes for these VERSION_UNIQUE definitions in a Django
app, removing the extra like indexes created on the CharField columns, and enforcing that only one version is current
at the same time, see:

	https://github.com/swisscom/cleanerversion/blob/master/versions_tests/__init__.py

	https://github.com/swisscom/cleanerversion/blob/master/versions_tests/apps.py

Note that this example is for Django >= 1.7; it makes use of the
application registry [https://docs.djangoproject.com/en/stable/ref/applications/] that was introduced in Django 1.7.

Integrating CleanerVersion versioned models with non-versioned models

It is possible to combine both, versioned models (as described up to this point) and non-versioned models.

In order to have your relationships work out correctly, make use of VersionedForeignKey as described in the
following table.
For example, one has to read the table as follows: “If a model inheriting directly from Django’s Model is pointing
a model inheriting from Versionable, then a VersionedForeignKey relation has to be used.”

	Model def. FK \ Model pointed by FK

	models.Model

	Versionable

	models.Model

	ForeignKey()

	VersionedForeignKey()

	Versionable

	ForeignKey()

	VersionedForeignKey()

Note that M2M-relationships have not been extended yet to work in a heterogeneous use case as described here.

VersionedAdmin admin for Django Admin

VersionedAdmin has three boolean fields that allow subclasses to easily control if the shortened identity, the version
end date, and the version start date show in the change view. These fields are list_display_show_identity,
list_display_show_end_date, and list_display_show_start_date and by default they are set to True.

Out of the box, VersionedAdmin allows for filtering the change view by the as_of queryset filter, and whether the
object is current.

Upgrade notes

CleanerVersion 2.x / Django 1.9/1.10/1.11

In Django 1.9 major changes to the ORM layer have been introduced, which made existing versions of CleanerVersion for
incompatible with Django 1.9 onwards. We decided to release a separate major version to support the Django 1.9 to 1.11.

CleanerVersion 1.6.0 / Django 1.8.3

Starting with CleanerVersion 1.6.0, Django’s UUIDField will be used for the id, identity,
and VersionedForeignKey columns if the Django version is 1.8.3 or greater.

If you are upgrading from lower versions of CleanerVersion or Django, you have two choices:

	Add a setting to your project so that CleanerVersion will continue to use CharField for Versionable’s
UUID fields. Add this to your project’s settings:

VERSIONS_USE_UUIDFIELD = False

This value defaults to True if not explicitly set when using Django >= 1.8.3.

	Convert all of the relevant database fields to the type and size that Django uses for UUID fields for the
database that you are using. This may be possible using Django’s migrations, or could be done manually by
altering the column type as necessary for your database type for all the id, identity, and
foreign key columns of your Versionable models (don’t forget the auto-generated many-to-many tables).
This is not a trivial undertaking; it will involve for example dropping and recreating constraints.
An example of column altering syntax for PostgreSQL:

ALTER TABLE blog_author ALTER COLUMN id type uuid USING id:uuid;
ALTER TABLE blog_author ALTER COLUMN identity type uuid USING identity:uuid;

You must choose one or the other solution; not doing so will result in your application no longer working.

Known Issues

	No multi-table inheritance [https://docs.djangoproject.com/en/stable/topics/db/models/#multi-table-inheritance]
support. Multi-table inheritance currently does not work if the parent model has a Versionable base class.
See this issue [https://github.com/swisscom/cleanerversion/issues/19] for more details.

	Creating Unique Indexes is a bit tricky for versioned database tables. A solution is provided for Postgresql (see the
Postgresql specific section). Pull requests are welcome if you solve this problem for another database system.

For a more up-to-date state please check our project page [https://github.com/swisscom/cleanerversion].

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to CleanerVersion’s documentation!

 		
 Historization with CleanerVersion

 		
 Quick Start

 		
 Installation

 		
 A simple versionable model

 		
 A related versionable model

 		
 Slowly Changing Dimensions - Type 2

 		
 Historization of a single entity

 		
 Many-to-One relationships

 		
 Declaring versioned M2O relationship

 		
 Adding objects to a versioned M2O relationship

 		
 Reading objects from a M2O relationship

 		
 Many-to-Many relationships

 		
 Declaring versioned M2M relationships

 		
 Adding objects to a versioned M2M relationship

 		
 Reading objects from a versioned M2M relationship

 		
 Versioning objects being part of a versioned M2M relationship

 		
 Removing objects from a versioned M2M relationship

 		
 Notes about using prefetch_related

 		
 Navigating between different versions of an object

 		
 Accessing the version at a given point in time

 		
 Accessing the current version of an object

 		
 Accessing the previous and next versions of an object

 		
 Deleting objects

 		
 Not actually deleted from the database

 		
 on_delete handlers

 		
 Restoring previous versions

 		
 Deferred fields

 		
 Unique Indexes

 		
 Specifying the id of an object at creation time

 		
 Postgresql specific

 		
 Integrating CleanerVersion versioned models with non-versioned models

 		
 VersionedAdmin admin for Django Admin

 		
 Upgrade notes

 		
 CleanerVersion 2.x / Django 1.9/1.10/1.11

 		
 CleanerVersion 1.6.0 / Django 1.8.3

 		
 Known Issues

_images/clone_m2m_item_1.png

_static/down.png

_images/clone_m2m_item_2.png

_static/comment.png

_images/cleanerversion_example_single_entry.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/clone_m2m_item_3.png

_static/ajax-loader.gif

_static/comment-close.png

